Indian Statistical Institute, Bangalore

M. Math First Year

Second Semester - Complex Analysis

Back Paper Exam Maximum marks: 100 Date: June 13, 2018 Duration: 3 hours

- 1. Let \mathbb{D} be the open unit disc, S^1 its boundary.
 - (a) Show that, for $\alpha \in S^1, \beta \in \mathbb{D}$, the rational function $z \to \alpha \frac{z-\beta}{1-\overline{\beta}z}$ maps \mathbb{D} biholomorphically onto \mathbb{D} and S^1 bijectively onto S^1 .
 - (b) Show that the functions defined in (a) form a group under composition. [10 + 10 = 20]
- 2. Let Ω be a simply connected domain such that $0 \in \Omega$. Let $f : \Omega \to \mathbb{D}$ be a holomorphic function such that f(0) = 0. If f is not onto \mathbb{D} , then show that there is a holomorphic function $g : \Omega \to \mathbb{D}$ such that g(0) = 0 and |g'(0)| > |f'(0)|. [20]
- 3. Let 0 < r < R and let $\Omega = \{z \in \mathbb{C} : r < |z| < R\}$. If $f : \Omega \to \mathbb{C}$ is holomorphic then show that there is a series representation $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ (which converges for all $z \in \Omega$). [20]
- 4. (a) If Ω is a simply connected planar domain then show that every non-vanishing holomorphic function on Ω has a holomorphic logarithm.
 - (b) Give an example (with proof) to show that the assumption of simply connectedness cannot be dropped. [10 + 10 = 20]
- 5. (a) State and prove Rouche's Theorem.
 - (b) Use Rouche's Theorem to prove that every non-zero complex polynomial of degree n has exactly n roots. [10 + 10 = 20]